Skip to main content

Graphing Obesity Trends

The five days of Durga Puja was stupendous as usual. Lots of great times with friends, all my favourite dishes for meals, and with no restrictions, it was a fantastic experience yet again. The countdown to October 20th, 2012 for the next years festival looks a long wait indeed.

This week's visualization was posted as a challenge in flowingdata.com on Apr 29th, 2010. It received several novel replies, none more appealing than the heatmaps. One of the problems of approaching a long-expired challenge is that all regular and normal forms of visualization is already considered and posted.

When I looked at the data, it was apparent that the distribution could be either viewed with respect to the Age-Group or, the Year of Birth. I, therefore, sought to plot years of birth along the vertical axis, and the obesity percentage on the horizontal axis, for every panel separated by the age group.

My visualization for the challenge is as follows:


A second version of the visualization:

Comments

Popular posts from this blog

Florence Nightingale Circumplex Chart

I was taken to the  Florence Nightingale's Wiki page   during a recent research, and one of the interesting things I noted was her contribution to statistics. It came to me as a pleasant surprise that she is credited with inventing the polar area diagram , or occasionally the Nightingale rose diagram, which is equivalent to a modern circular histogram. Following the completion of my project and in my weekend to spare, I devoted time to recreating the chart in Excel. It took a combination of Doughnut-Pie-and XY charts and close to four hours to finish it. The colours are a bit darker, the values are approximate and the labels differently oriented, yet the chart looks fairly close to the original as is shown by the picture below.

The Dorling Cartogram

My last project involved using a multitude of regions for drawing analysis, parallels and comparison. Not wanting to use yet another Choropleth graph, I decided to look up alternatives that were easier to create and preferably required no VBA. Soon I stumbled upon "The Dorling Cartogram", defined in the UCSB site as, "This type of cartogram was named after its inventor, Danny Dorling of the University of Leeds. A Dorling cartogram maintains neither shape, topology nor object centroids, though it has proven to be a very effective cartogram method. To create a Dorling cartogram, instead of enlarging or shrinking the objects themselves, the cartographer will replace the objects with a uniform shape, usually a circle, of the appropriate size." I had the data for Obesity in the United States handy, so I decided to give it a try before using it in my project. I opted to use Bubble charts because data points within a series may need to be of varied shapes based on

The Pie-Doughnut Combination: A Fan Plot

Happy to be back after a pretty busy beginning to the new year. I had this completed almost immediately following the preceding post but was otherwise hard-pressed to find a suitable time to post it. Soon after writing the Florence Nightingale Circumplex Chart post, I started searching for more varieties of charts that can be created using combinations of Pie-Doughnut charts. Soon enough, I found one through Naomi B. Robbins' comment in a Jorge Camoes' post . The referenced PDF article attempts to use Fan Plot to display relative quantities and differences using the R statistical language as is shown in the image below. Impassive of its benefits and/or disadvantages, I created it in Excel.