Skip to main content

USSR: After 20 years

Delighted to be back after three weeks of treatment, care and medication. I rarely fall ill, so this afforded a nice break from my regular activities and also the chance to browse several websites which deal with data analysis and presentation.

My data-set for this week is from the Guardian Datablog, dated Aug 17th, titled "End of the USSR". The piece is accompanied by an image that uses a map to rate the former soviet provinces on their performance since the collapse.

The data includes yearly figures of GDP, GDP per Capita, Population, Life expectancy and Mortality among other interesting indicators like Intentional homicides, Prison population rate, Prevalence of HIV by gender, Unemployment, Happiness index score, Global peace index and Number of McDonald's!

Given the large difference in figures between Russia and other republics, I was curious to see how the presenter would design the population and the GDP charts for comparison.

I was massively disappointed. The population chart is simply a column chart representing the percentage change of population in 2009 from 1991, and a label to display the current population - very much an easy way out. The GDP chart can be found nowhere, although there is a clustered column chart that displays the GDP per Capita for 3 years out of 20. 1991, 2000 and 2009.

I spent an idle afternoon working on the Population and Life expectancy data and came up with the following after 2 hours.


Comments

Popular posts from this blog

The Playfair Charts: Scotland ExIm Barchart

Soon after finishing the second Playfair chart, the one on Wheat Price and Wages, I searched the internet for additional charts made by him. I found a Bar chart circa 1786, which showed the Scottish export and import volumes with other countries. For me, the real thrill was to scroll by the list of the name of places long consigned to history books - Jersey Is, Greenland, Prussia, Denmark and Norway (together) and Flanders.  First, the original Playfair Barchart from Wikipedia,  Then, my version of it in Excel.  A couple of parting words:  Excel 2007 no longer support dots and lines as fillers for charts. Hence, the ribbed import chart is given a different color, Gold.  Normally, I'd use data point labels to construct the chart legends and other declarations given at the bottom of the chart. However, given Excel 2007' inability to automatically re-size labels to fit texts, I was forced to use text-boxes instead. 

The Dorling Cartogram

My last project involved using a multitude of regions for drawing analysis, parallels and comparison. Not wanting to use yet another Choropleth graph, I decided to look up alternatives that were easier to create and preferably required no VBA. Soon I stumbled upon "The Dorling Cartogram", defined in the UCSB site as, "This type of cartogram was named after its inventor, Danny Dorling of the University of Leeds. A Dorling cartogram maintains neither shape, topology nor object centroids, though it has proven to be a very effective cartogram method. To create a Dorling cartogram, instead of enlarging or shrinking the objects themselves, the cartographer will replace the objects with a uniform shape, usually a circle, of the appropriate size." I had the data for Obesity in the United States handy, so I decided to give it a try before using it in my project. I opted to use Bubble charts because data points within a series may need to be of varied shapes based on...

The Pie-Doughnut Combination: A Fan Plot

Happy to be back after a pretty busy beginning to the new year. I had this completed almost immediately following the preceding post but was otherwise hard-pressed to find a suitable time to post it. Soon after writing the Florence Nightingale Circumplex Chart post, I started searching for more varieties of charts that can be created using combinations of Pie-Doughnut charts. Soon enough, I found one through Naomi B. Robbins' comment in a Jorge Camoes' post . The referenced PDF article attempts to use Fan Plot to display relative quantities and differences using the R statistical language as is shown in the image below. Impassive of its benefits and/or disadvantages, I created it in Excel.